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Background: Heart surgery results in complement activation with the

potential for collateral end-organ damage, especially if the protective

elements (complement factor H, Apolipoprotein J) are inadequate. Here, we

have investigated if peri-operative stress results in an imbalance between

complement activation and its protective mechanisms up to 3 months after

heart surgery.

Methods: 101 patients scheduled for non-emergent cardiac surgery donated

blood before the procedure (tbaseline), and 24 h (t24h), 7 days (t7d) and 3

months (t3m) after. Complement activation was measured as a serum level

of soluble activated component 5 (sC5a) and soluble terminal complement

complex (sTCC). Simultaneously, protective complement factor H (CfH),

and apolipoprotein J (ApoJ) were measured. Inflammatory responses were

quantified using C-reactive protein (CRP) and interleukin-6 (IL-6). Details

regarding anesthesia, intensive care unit (ICU) stay, pre-existing conditions,

the incidence of postoperative complications, and mortality were collected

from medical records.

Results: C5a declined at t24h to rebound at t7d and t3m. sTCC was

significantly depressed at t24h and returned to baseline at later time points. In

contrast, CfH and ApoJ were depressed at t3m. Milieu of complement factors

aligned along two longitudinal patterns:cluster#1 (C5a/sTTC continuously

increasing and CfH/ApoJ preserved at tbaseline) and cluster#2 (transient
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sC5a/sTTC increase and progressive decline of CfH). Most patients belonged

to cluster #1 at t24h (68%), t7d (74%) and t3m (72%). sTCC correlated with

APACHE1h (r2 =−0.25; p < 0.031) and APACHE24h (r2 = 0.27; p < 0.049).

IL-6 correlated with C5a (r2 =−0.28; p < 0.042) and sTTC (r2 =−0.28;

p< 0.015). Peri-operative administration of acetaminophen and aspirin altered

the complement elements. Prolonged hospital stay correlated with elevated

C5a [t (78) = 2.03; p = 0.048] and sTTC serum levels [U (73) = 2.07; p = 0.037].

Patients with stroke had a decreased serum level of C5a at t7d and t3m.

Conclusion: There is a significant decrease in complement protective factors

3 months after cardiac surgery, while C5a seems to be slightly elevated,

suggesting that cardiac surgery affects complement milieu long into recovery.

KEYWORDS

cardiac surgery, complement, terminal complement complex, complement
component 5a, complement factor H, apolipoprotein J, clusterin

Introduction

Complement activation is triggered in three ways: classical,
alternative and lectin-driven to activate an innate inflammation
to augment pathogens and dead cell removal (1, 2). All pathways
merge at C5a and C5b, followed by the formation of the
terminal complement complex (TCC) as the common pathway.
C5b-9 inserts itself into the cell membrane as one of the
primary effector bactericidal mechanisms (3). However, TCC
can be self-damaging via endothelial activation, cell death, and
intravascular hemolysis. Several proteins keep the complement
activation in check, with CD55, CD59, and CD46 being the
most extensively studied (4, 5). In contrast, humoral factors such
as complement factor H and clusterin/Apo J have experienced
much less scrutiny despite their critical role in limiting collateral
complement-mediated damage (6–19). Their depletion may
exacerbate end-organ damage and contribute to an excess of
morbidity (10, 13, 15, 16, 20).

During heart surgery, the complement system is activated
via contact with artificial surfaces, immunoglobulins, or
via a CRP-mediated pathway (18, 19). As a result, direct
complement cytotoxicity is exacerbated by a reperfusion
injury and the influx of inflammatory leukocytes (21).
Subsequent vasoconstriction, thrombosis, and inflammation
may result in hypoperfusion organ injuries. It is not surprising
that imbalance in complement has been suggested as the

Abbreviations: APACHE, Acute Physiologic Assessment and Chronic
Health Evaluation; ApoJ, Apolipoprotein J; BMI, Body Mass Index; C5a,
Complement component 5a; CCI, Charlson Comorbidity Index; CfH,
Complement Factor H; CRP, C Reactive Protein; CVA, Cerebrovascular
accident; DVT, Deep Vein Thrombosis; EMR, Electronic Medical Review;
ICU, Intensive Care Unit; IgG, Immunoglobulin G; IgM, Immunoglobulin
M; IL-6, Interleukin 6; LOS, Length of Stay; PAMP, Pattern Activation of
Molecular Patterns; PE, Pulmonary Embolism; SOFA, Sequential Organ
Failure Assessment; sTCC, Soluble Terminal Complement Complex.

target of therapeutic interventions. However, interference with
effector components of complement failed to demonstrate
favorable clinical outcomes, except in severely sick patients
undergoing heart surgery (22–24). This lack of progress
in effectively modulating complement activation may result
from neglecting the post-surgical abnormalities in protective
elements of complement (22–25). No study addressed the long-
term changes in serum mechanisms moderating complement
activation after cardiac surgery.

Here, we addressed the knowledge gap in temporal
dynamics between cytoprotective (clusterin/ApoJ, complement
factor H) vs. cytotoxic (C5a, TTC) elements after non-
emergent cardiac surgery. We hypothesized that activation of
complement and protective effectors would be synchronized
to minimize end-organ damage (16, 17, 26). Specifically,
patients with a misalignment between complement effector
and protective would experience increased thrombotic events.
Finally, we hypothesized that acute disturbances in complement
components will resolve 3 months after surgery.

Patients and methods

Patients enrollment

Our study protocol was approved by the Institutional
Review Board (IRB) of the University of Pennsylvania
(#815686). All adult patients scheduled for non-emergent
heart surgery were approached for consent. We excluded
patients with pre-existing immunological aberrancies on
immunosuppressant medications in the last 6 months
(prednisone PO or IV more than 5 mg daily, αTNFα,
αIL-6, αIL-3, αCD20 antibodies therapy, immunoglobulin,
plasmapheresis, methotrexate, chemotherapy). The study did
not include patients post-transplant.

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983617
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-983617 December 16, 2022 Time: 9:19 # 3

Laudanski et al. 10.3389/fcvm.2022.983617

Demographical and clinical data
collections

Electronic medical records (EMR) were used to collect
demographic and medical data for all enrolled participants.
Charlson Comorbidity Index (CCI) measured the burden
of chronic disease (27). EMR were extracted for description
of surgical procedure and bundle as coronary artery graft
bypass (CABG), aortic vavle surgery, mitral valve surgery,
aortic arch surgery, and others (Table 1). Most patients have
multiple procedure done during one surgery. The perioperative
insult was gauged by the duration of anesthesia and surgery,
estimated blood loss, and volume of crystalloid resuscitation.
The usage of opioids, benzodiazepines, acetaminophen,
ketorolac, and steroids during the perioperative 24 h was
registered. Acute physiology and chronic health evaluation
II (APACHE II) was calculated within 1 h (APACHE1h),
24 h (APACHE24h), and 48 h (APACHE48h) after admission
to the Intensive Care Unit (ICU) (28). The severity of
the illness was determined by Sequential Organ Failure
Assessment (SOFA) (29). Organ failure was defined
according to MODS criteria or the Glue Grant framework
(30, 31). Depp venous thrombosis (DVT), pulmonary
embolism (PE), and stroke diagnoses were extracted from
medical records. Survival was determined at 28 days and 3
months. Platelets count was extracted from routine lab from
EHR.

The characteristics of the studied population are presented
in Table 1.

Sample procurement

Blood was collected in sodium citrate tubes after collection
from an arterial or central line. Plasma was isolated by
centrifugation for 10 min at 1,200 ×g 4◦C, aliquoted, and stored
at −80◦C. Blood was collected before non-emergent cardiac
surgery (tbaseline) followed by 24 h (t24h) and 7 days (t7d) later,
with final follow-ups at 3 months (t3m).

Measures of complement effector
activation

To detect human C5a levels in plasma samples, αC5a
antibody neo-epitope (Biolegend, San Diego, CA) was utilized.
Secondary detection was done with biotinylated anti-human
C5a mAb (Biolegend, San Diego, CA) and avidin or streptavidin
conjugated to horseradish peroxidase (BD, Franklin Lakes,
NJ). Recombinant hC5a (Hycult, Wayne, PA) was used as the
standard. An analogous process was utilized for the detection of
sTCC by utilizing α human TCC mAb neoepitope (SantaCruz,
San Diego, CA), biotinylated anti-human TTC mAb (QDC5,

TABLE 1 Demographical and clinical characteristic of
the studied sample.

Demographics (101 patients)

Age [X ± SD] 62.6 ± 12.44

Over 60 [%] 33.7%

Gender

Male [%] 75.24%

Female [%] 24.75%

Not reported [%] 0%

Race

Hispanic Latino [%] 1.98%

Black [%] 5.94%

White [%] 90.1%

Other/Asian/unknown [%] 3.96

Pre-existing conditions

Weigh 84.6 ± 21.33

BMI 27.6 ± 5.47

Charleston comorbidity index [X ± SD] 3.9 ± 2.03

ACS/MI [%] 13.86%

CHF [%] 15.8%

PVD [%] 9.9%

CVA/TIA [%] 9.9%

Dementia [%] 0%

COPD [%] 5.94%

DM [%] 28.7%

Anesthesia and surgery data

Duration of anesthesia; mean ± SD [min] 372.3 ± 105.89

Duration of surgery; mean ± SD [min] 266.8 ± 101.34

Duration of cardiopulmonary bypass; mean ± SD [min] 129.2 ± 65.04

Coronary artery bypass surgery; no. 51

Mitral valvuloplasty and replacement; no. 26

Aortic valvuloplasty and replacement; no. 40

Aortic aneurysm repair; no. 8

Others; no 4

Estimated blood loss [ml] 201.1 ± 283.89

Perioperative management

Transfusions during surgery

Packed red blood cells, mean (IQ25; IQ75) [mL] 115 [0; 1,200]

Fresh frozen plasma, mean (IQ25; IQ75) [mL] 93.4 [0; 1,750]

Total crystalloid during surgery[mL] 1,252 ± 552.38

Clinical care during 24 h post-surgery

Packed red blood cells, mean; (IQ25; IQ75) [mL] 12.1 [0;600]

Fresh frozen plasma, mean; (IQ25; IQ75) [mL] 9.1 [0; 750]

Corticosteroid administration (% of all cases) 7.9%

Ketorolac administration (% of all cases) 7.9%

Acetaminophen administration (% of all cases) 29.7%

Acetylsalicylic acid administration 32.7%

Opioids administration 689.2 ± 221.89

BZD administration 0.38 + 2.34

ICU stay

APACHE score at 1 h, mean ± SD 16.0 ± 5.55

APACHE score at 24 h, mean ± SD 8.8 ± 4.29

APACHE score at 48 h, mean ± SD 8.4 ± 4.11

(Continued)
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TABLE 1 (Continued)

Demographics (101 patients)

Outcome at 28 days

LOS ICU 8.1 ± 40.23

LOS hospital 10.1 ± 21.08

DVT 0.99%

PE 2.97%

CVA 6.93%

Discharged/in the healthcare facility/expired 90.9%/5.94%/2.97%

in-house). sC5b-9 Complex (Complement Tech, Marlon, NJ)
used as standard.

Assessment of the complement
protective factors and inflammation
markers

Complement factor H, apolipoprotein J, and C-reactive
protein were measured with the multiplex kit (Thermofisher,
Waltham MA). IL-6 in serum was determined via ELISA
(Thermofisher, Waltham MA).

Statistical analysis

The Shapiro-Wilk W test and distribution plots tested the
normality and distribution of variables. Parametric variables
are expressed as mean ± SD and compared, using t-Student.
For non-parametric variables, median (Me) and interquartile
ranges (IR) will be shown with the U-Mann-Whitney statistic,
employed to compare such variables. ANOVA was calculated
for parametric variables with multiple discrete values, with
Shaffe’s test as a post hoc test. When applicable, paired contrasts
for longitudinal comparisons were used with tbaseline as the
reference point. Correlational momentum was calculated as r2

Pearson. A regression analysis was done stepwise methods when
appropriate. k-means cluster analyses and data normalization
were calculated with scikit-learn package. A p-value less than
0.05 was considered statistically significant for all tests based on
the hypothesis. Statistical analyses will be performed with SPSS
26 [IBM, Whalton, NY), and in R (32)].

Results

Longitudinal analysis of cytotoxic (sTTC, C5a) and
protective humoral complement factors (clusterin/ApoJ, factor
H) after cardiac surgery.

Age over 60, gender, and race did not significantly affect the
baseline levels of studied factors (data not shown).

sC5a changed significantly over time with concentrations
initially decreasing [U (85) =−3.17; p = 0.0015), rebounding to
significantly higher values at 7 days [U (79) = 2.54; p = 0.011]
and 3 months (U [69] = 3.34; p = 0.00082) (Figure 1A). When
data were compared pairwise, the median changes from baseline
were 83, 136, and 150% at t24h, t7d, and t3m, respectively
(Figure 1B). sTTC levels changed significantly at t24h [U
(63) =−4.31; p = 0.00016] followed by recovery to pre-surgical
values (Figure 1C). When the data were compared pairwise, the
median changes from baseline were 43, 101, and 83% at t24h, t7d,
and t3m, respectively (Figure 1D). However, significant sTTC
variability at tbaseline and t3m was apparent. The correlation
between sTTC and C5a was present only at t24h (r2 = 0.37;
p < 0.004) (data not shown). A regression analysis revealed
that the level of sC5a was the most significant contributor to
sTTC levels at t24h, accounting for 56% (p = 0.0067) and 26%
(p = 0.041) of sTTC variance.

Significant changes over time were seen for both CfH and
ApoJ. CfH levels were the lowest at t7d [W (70) = 3.06; p = 0.002]
and t3m [W (56) = 3.82; p = 0.00013] (Figure 2A). When the data
were compared pairwise, the median changes from baseline were
94, 84, and 64% at t24h, t7d, and t3m, respectively, (Figure 2B).
ApoJ was lowest at t24h [W (86) = 2.56; p = 0.01] and at t3m [W
(60) = 3.46; p = 0.00053] (Figure 2C). The changes from baseline
were 81, 82, and 58%, respectively (Figure 2D).

The interplay between complement protective and
effector proteins.

There was a significant correlation between C5a and sTTC
(Figure 3A) and CfH and ApoJ (Figure 3B) at t24h. The
unsupervised analysis identified two clusters with different
time dynamics across all four factors studied (Figures 3C,D).
Cluster #1 was a cluster with the gradual activation of C5a
and sTTC over time while protective factors remained stable
(CfH) or increased over time (ApoJ) (Figures 3C,D). Cluster
#2 demonstrated an increase in sC5a, sTCC, and ApoJ at 7
days to decline at t3m (Figures 3C,D). However, CfH rapidly
declined and remained low at t3m in the case of patients in
complement cluster#2 (Figures 3C,D). Most patients belonged
to complement cluster #1 at t24h (68%), t7d (74%), and t3m

(72%). Patients belonged to the original t24h cluster, but the
transition of individuals to other complement clusters was seen
at t7d and t3m (Figure 3E).

Relationship of complement activation
vs. severity of the peri-operative injury

There was no correlation between the time on
cardiopulmonary bypass, aortic cross-clamp, or anesthesia and
any complement markers (data not shown). sTCC correlated
with APACHE1h (r2 = 0.25; p < 0.031) and APAPCHE24h
(r2 = 0.27; p < 0.049). CfH (r2 = 0.32; p < 0.003) correlated
with the volume of transfused PRBC during t24hr . Similar
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FIGURE 1

Longitudinal analysis of complement effectors (sC5a, sTCC) after heart surgery. Serum levels of C5a decreased early after surgery to increase up
to 3 months of follow-ups (A,B). In contrast, sTTC was depressed only at t24h (C,D). *Denotes the statistical significance of 0.05 or less.

correlations were seen between CfH (r2 = 0.29; p < 0.005), and
the volume of transfused fresh frozen plasma was transfused at
the same time. Finally, the amount of crystalloid administered
correlated weakly with CfH (r2 = 0.28; p < 0.008) during
surgery. C5a did not correlate with any measured variables of
surgical insult severity.

Serum IL-6 inversely correlated with C5a (r2 =−0.28;
p < 0.042) and sTTC (r2 =−0.28; p < 0.015) at t24h. CRP
correlated highly with CfH (r2 =−0.42; p = 0.029) at t24h.

Perioperative intake of acetaminophen resulted in
diminished [21.5 (16.6; 52.3) vs. 41.5 (29.5; 87.9)] serum
levels of CfHt24h [U (91) = 2.84; p = 0.0048] while individuals
receiving aspirin had lower serum sTTC at t24h [3.5 (0; 6.7) vs.
3.5 (0; 1.7); U (75) = 1.97; p = 0.049]. The intake of ketorolac and
steroids had no impact on the serum levels of C5a, sTTC, CfH,
or ApoJ (data not shown). The number of benzodiazepines
given in the first 24 h after surgery correlated significantly
with CfH (r2 =−0.28; p < 0.008), and ApoJ (r2 =−0.23;
p < 0.028) at t24h but not with the perioperative intake of
opioids (data not shown).

Correlations with clinical outcomes

Low mortality or the incidence of DVT or PE in our studied
group precluded the comparison of studied complement factors.
Patients who experienced an acute CVA significantly diminished
levels of C5a at t7d and t3m (Figure 4). Emergence of AKI at
24 h or at the discharge was not related to changes in C5a, sTTC,
CfH, or ApoJ at any time point (data not shown). However, only
few patients (n = 5) experienced AKI at that time. Patients who
were hospitalized at 28 days had significantly elevated serum
C5a [186.2 ± 154.3 vs. 343.7 ± 327; t (78) = 2.03; p = 0.048] and
sTTC serum levels [0.3 (0; 3.6) vs. 6 (4.35; 6.9); U (73) = 2.07;
p = 0.037]. The length of stay (LOS) in the ICU or hospital did
not correlate significantly with serum C5a, sTTC, CfH, or ApoJ.

Discussion

The first unique finding of this study is the observation
of severe disruption in the complement milieu extending
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FIGURE 2

Longitudinal analysis of complement protective factors (CfH, ApoJ) after heart surgery. Progressive depletion of the CfH could be seen in the
post-op period (A,B). In contrast, ApoJ started to recover after initial depletion (C,D). *Denotes the statistical significance of 0.05 or less.

into post-surgical recovery and outside the period typically
considered for peri-operative inflammation. Prior data reported
that the effector elements of complement were altered for up
to 48 h after surgery (8, 18, 19, 33, 34). Our study focused
on 3 months’ performance of complement after heart surgery
in adults. We demonstrated increased activity of C5a but no
significant changes in serum sTTC in the wake of cardiac
surgery and up to 3 months after. C5a plays a vital role in the
chemotaxis of granulocytes and in coagulation activation (2, 3).
More importantly, elevated C5a increases the risk of graft failure
and coronary vasospasm and accelerates atherosclerosis (33, 35,
36). Here we observed decreased level of C5a connected to peri-
operative stroke incidence, but the data should be considered
a pilot for a more extensive study. The abnormal level of sC5a
in patients experiencing a stroke may result from vasculitis
consuming complement, as it has been seen in transplanted
hearts (36). The etiology of elevated C5a is unclear. Acute
inflammation measured by IL-6 seemed resolved. However,
elevated mannose levels at the discharge of pediatric patients

undergoing heart surgery suggest a potential mechanism of
protracted C5a activation (18, 34, 37).

The second important and novel finding is that the long-
term increase of sC5a is not counterbalanced by factors
protecting from the overactivation of the complement system
(6, 11–13, 15, 17, 20). As demonstrated both in time series and
cluster analysis, both ApoJ and CfH were severely depressed
in several patients if their C5a and sTCC were elevated. This
is the first observation of this nature to date. Hemodilution
is unlikely to be responsible for decline of ApoJ and CfH
considering that 3 months after surgery patients fluid status
should be balanced. Excessive consumption is potential reason
but a generalized phenomenon like disseminated intravascular
coagulation should resolve at 3 months. Also, the platelets
count normalized at the time of discharge (data not shown).
Interestingly, the milieu of patients’ complement factors created
two relatively uniform clusters initially right after surgery.
However, over time, patients tended to group in cluster#1. This
cluster sustained activation of C5a and preserved ApoJ and CfH,
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FIGURE 3

Complement factors milieu after cardiac surgery. C5a and TTC correlated strongly at the baseline (A), while protective factors (ApoJ CfH)
correlated at t24h (B). While factors were analyzed using clustering, two subgroups emerged: cluster#1 can be characterized by a significant
increase in ApoJ at 3 months while cluster#2 is characterized by significant activation of sC5a later after surgery concomitant ApoJ (C,D).
Patients’ complement milieu was not stagnant as complement activation characteristics moved between clusters (E).

and resembles a natural resolution of complement activation
where elevated levels of C5a and sTTC are counterbalanced
by protective elements. The alternative cluster was different
mainly due to the profound long-term depletion of CfH and
ApoJ. CfH is critical as the alternative activation pathway of
the complement system (2, 6, 11). Alternative and mannose-
driven complement activation is predominantly affected during
cardiopulmonary bypass surgery (6, 18, 35). The liver is one
of the predominant producers of CfH and ApoJ, but incidence
of liver failure was low in our studied population (38). CfH is
activated by pentraxin, but this protein family was not in our
study (17). Finally, acute inflammation was measured via IL-6
and normalized at 7 days so the ongoing inflammatory process
cannot account for the decrease in ApoJ and CfH (8, 18).

Applying the multidimensional approach to data is an
alternative to the prior studies. It aligns well with the current
understanding of critical care illnesses, such as dysregulation
failure. It offers a holistic assessment of complement where
several biological components are considered as several
regulatory components like CfH and ApoJ may be critical in
restoring post-cardiac effector components imbalance (22, 23).
It also offers a new approach for treating the post-cardiac
surgery abnormalities as the prior clinical studies modulating
complement failed to demonstrate widespread clinical benefit
(25). Anti-complement modulators have been advocated for
long time as potential drugs for patient undergoing heart

surgery but clinical trial failed. The failure is often attributed
to insufficient understanding of complement activation during
heart surgery (39, 40). Our study suggested that complement
performance is multidimensional and involved multiple pro-
and anti-complement factors (2, 22). It is possible that
modulating of C5a/sTTC vs. supplementing ApoJ or CfH needs
to be precisely targeted in specific patients subpopulation as
demonstrated in our cluster analysis. The clinical meaning of

FIGURE 4

The effect of complement changes on the incidence of
cerebrovascular accidents. Serum level of C5a at t7d and t3m

was significantly depressed in patients (n = 7) who experienced
stroke during 28 days after surgery. *Denotes the statistical
significance of 0.05 or less.
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our findings has yet to be determined as limited study samples,
and incidence of stroke precluded statistical analysis.

Limitations of our study need to be acknowledged. First,
extending the study to a different center and using commercially
available kits is necessary to generalize the findings. The high
standardization of care in our system may have increased the
chance of this bias. Second, we only investigated the effector arm
of the complement activation system while interference with
the mannose/lectin activated pathway may be more dominant
in cardiac surgery patients (34, 41). Other elements of the
complement regulatory components were not measured while
representing distinctive activation, inhibition, and regulation
(4, 12, 17, 26, 37). Third, our study was not powered to look
for the clinical impact of the complement milieu. No prior
study has analyzed several complement factors simultaneously.
Most of the correlations between complement factors and
clinical measurements reflecting cardiac surgery severity were
weak and, at best, suggested potential relationships. Most of
these correlations were related to blood loss or perioperative
transfusions. Consequently, changes in the complement system
may be related to exogenous injections of CfH and ApoJ as
they are abundant in serum (6, 7). Finally, CfH polymorphisms
is rare and unlikely as the factor affecting results (14).
Also, pre-existing condition leading to surgery were very
ambiguous. Some patients had diagnosis of coronary artery
disease, while others had pre-existing endocarditis leading
to surgery. Several others pre-existing conditions could be
extracted from chart. Several of these conditions may affect
the baseline complement status at baseline with even less
predictable effect for the peri-surgical fluctuations of factors (2,
22, 36).

Our pilot study offers several methodological advantages
over prior studies. First, it provides a relatively large sample
and, more importantly, a longitudinal analysis extending 3
months after surgery (18). The same heparinized circuit was
used throughout the study’s duration (19). We also account for
the acetaminophen, ketorolac, aspirin, and steroids used during
the surgery (19). High standardization of the care reduced
post-surgery care variability. We accounted for inflammation
levels by measuring IL-6. Several components of perioperative
management were factored in more detail as compared to prior
studies (18, 22, 25).

In summary, we demonstrated for the first time imbalance
between C5a and CfH and ApoJ three months after non-
emergent cardiac surgery. This imbalance was related to the
longer LOS and emergence of cerebrovascular events.
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