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Abstract: The balance between neurodegeneration, neuroinflammation, neuroprotection, and COVID-
19-directed therapy may underly the heterogeneity of SARS-CoV-2’s neurological outcomes. A total
of 105 patients hospitalized with a diagnosis of COVID-19 had serum collected over a 6 month period
to assess neuroinflammatory (MIF, CCL23, MCP-1), neuro-injury (NFL, NCAM-1), neurodegenerative
(KLK6, τ, phospho τ, amyloids, TDP43, YKL40), and neuroprotective (clusterin, fetuin, TREM-2)
proteins. These were compared to markers of nonspecific inflammatory responses (IL-6, D-dimer,
CRP) and of the overall viral burden (spike protein). Data regarding treatment (steroids, convalescent
plasma, remdasavir), pre-existing conditions, and incidences of strokes were collected. Amyloid β42,
TDP43, NF-L, and KLK6 serum levels declined 2–3 days post-admission, yet recovered to admission
baseline levels by 7 days. YKL-40 and NCAM-1 levels remained elevated over time, with clusters
of differential responses identified among TREM-2, TDP43, and YKL40. Fetuin was elevated after
the onset of COVID-19 while TREM-2 initially declined before significantly increasing over time.
MIF serum level was increased 3–7 days after admission. Ferritin correlated with TDP-43 and KLK6.
No treatment with remdesivir coincided with elevations in Amyloid-β40. A lack of convalescent
plasma resulted in increased NCAM-1 and total tau, and steroidal treatments did not significantly
affect any markers. A total of 11 incidences of stroke were registered up to six months after initial
admission for COVID-19. Elevated D-dimer, platelet counts, IL-6, and leukopenia were observed.
Variable MIF serum levels differentiated patients with CVA from those who did not have a stroke
during the acute phase of COVID-19. This study demonstrated concomitant and opposite changes in
neurodegenerative and neuroprotective markers persisting well into recovery.

Keywords: COVID-19; neurodegeneration; neuroinflammation; clusterin; fetuin; CCL23; remdesivir;
convalescent plasma; steroids; stroke

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been linked to
abnormalities in the central nervous system such as the loss of smell and taste, cognitive
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decline, delirium, cerebrovascular accidents, neuronal autoimmune illnesses, and psychi-
atric disorders [1–7]. However, the heterogeneity of symptoms remains puzzling [1,3,7–10].
The development of these abnormalities often occurs within two days from the onset
of symptoms [1,5,7,11,12]. In addition, an increasing number of survivors suffer from
long-term neurological sequela [13–16].

Coronaviruses contribute to the emergence of neuropathologies via several mech-
anisms: direct neurotoxic effects to homogenous and retrosynaptic transport, localized
neuroinflammation, blood–brain barrier (BBB) dysfunction, and secondary nervous tis-
sue damage in response to generalized inflammation and hypoxia [7,8,17–20]. Moreover,
SARS-CoV-2 co-localizes with the phosphorylated tau (τ) protein, triggering neuronal
death or interfering with the distribution of τ [21]. The latter effect persists, suggesting
a potential chronic mechanism for neurodegeneration. The spike protein S1 subunit (S1)
receptor-binding domain binds to several neuronal proteins, including Amyloid-β1, α-
synuclein, τ, prion, and TAR DNA-binding protein 43 (TDP-43) [22]. Amyloid β1-42, but
not Aβ1-40, exhibits a preferentially high affinity for the S1 protein of SARS-CoV-2 and
angiotensin-converting enzyme 2 (ACE2) [23]. N-protein in silico interacts with RNA and
is key for the formation of stress granules in the host [24]. This interference with several
chaperone proteins is a hallmark of coronavirus proteins [25]. These interactions can trig-
ger the aggregation of the brain’s proteins when protective anti-folding mechanisms are
impaired, potentially exacerbating ongoing neurodegeneration processes and effects of the
non-specific inflammatory response [26–30]. Several case reports, case series, and research
projects provided conflicting data regarding the levels of τ, Amyloid β1-42, and Amyloid
β2-41 in COVID-19 [6,31–35]. In silica, analyses suggested molecular mimicry between the
compromising of SARS-CoV-2 and nervous system proteins, but clinical correlations are
not described [3,36].

In a “classical” neurodegeneration illness, Alzheimer’s disease (AD), τ protein,
phosphoτ181, and amyloids (β40 and β42) are critical modulators, and their burden
correlates with disease severity [37–41]. Neurogranin (NRG), TAR DNA-binding protein
43 (TDP43), chitinase 3-like 1 (YKL40, cartilage glycoprotein-39), and kallikrein 6 (KLK6)
are often found in classical AD and other dementias [42–49]. Markers of neuronal (neuro-
filament light, NF-L) and glial fibrillary acidic protein (GFAP) are commonly elevated in
neurodegenerative illnesses due to underlying neuron injury and secondary to immune
system activation, hypoxia, and high free radical environment [41,42,50]. This somewhat
complex landscape indicates the heterogeneity of the dementias and cognitive decline in
general. It also raises the question of how the heterogeneity of COVID-19 neurological pre-
sentations reflects the diverse ways SARS-CoV-2 interacts with neuronal systems instead of
one particular disease [1,9,10]. Several biomarkers of neurological dysfunction have been
reported as altered in neurodegenerative cognitive disorders, psychosis, schizophrenia, and
neurodysfunctional processes: ailments commonly found in COVID-19 patients [51–55].
Furthermore, rather than their absolute levels, the dynamics of markers are more important
for predicting cognitive outcomes than isolated measurements [56,57]. However, only a few
of these markers were studied in COVID-19, but even fewer look at them longitudinally in
COVID-19 survivors [12,34].

Apart from direct SARS-CoV-2 neurotoxicity, general and local immune activation can
accelerate neurodegeneration and neuro-injury [58]. Microglia, astrocytes, and oligodendro-
cytes provide a local environment governing neuroinflammation trajectories and critically
impact the trajectory of the neurodegeneration process and subsequent outcomes [59–64].
Furthermore, the influx of peripheral leukocytes into the central nervous system via a dys-
functional BBB can fuel neuroinflammation [65–67]. Monocyte chemoattractant proteins
(MCP), monocyte inhibitory factor (MIF), C-X-C motif ligand 13 (CXCL13), and C-C motif
ligand 23 (CCL23), have been implicated in intraparenchymal leukocyte migration, vasculi-
tis and, in the case of CCL23, MIF, and MCP-1, are linked to the progression of dementia by
supporting chronic neuroinflammation [68–74]. Concomitantly, the radiographic indicators
of neuronal damage and vascular injury persist for three months after the resolution of
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COVID-19 [75–77]. Considering the high degree of inflammation, it is not surprising that
cerebrovascular events are relatively common in COVID-19 along with some cognitive
decline [11,78,79]. Furthermore, CCL23 and MCPs have been connected to the severity
of the clinical presentation of COVID-19 while being linked to the emergence of chronic
neurodegeneration under other circumstances [80,81]. This post-COVID-19 inflammation
may be particularly severe in individuals with pre-existing cognitive vulnerability [82–87].
Furthermore, a relative excess of cerebrovascular events in COVID-19 may exacerbate the
cognitive decline in primary or secondary neurodegenerative illnesses [11,78,79]. Finally,
unfavorable pre-existing homeostasis (lack of antioxidants, nutrition deficiency, others) may
increase the degenerative potential of COVID-19-driven inflammation [88–90]. Excessive
burden from pre-existing diseases and malnutrition are commonly seen in the populations
most-stricken by COVID-19. Poor nutritional status may be of particular importance.

Neurodegenerative and neuro-injury processes are counterbalanced by several pro-
tective mechanisms such as limiting excessive damage by immune system activation,
complement proteins, free radicals, and other mechanisms [86,91–93]. Clusterin, fetuin-A,
and TREM-2 are examples of biomarkers linked to delays in the progression of neurodegen-
eration [86,91–93]. The depletion of these factors results in the progression of neurodegen-
erative disorders and excess cerebrovascular strokes [85,86,91–97]. Apolipoprotein E (apoE)
was frequently linked to dementia progression in general, but in COVID-19, this factor
may be of particular importance [98]. However, there is a gap in knowing how the neuro-
protective mediators counterbalance the neurodegeneration processes in COVID-19 [12].
Interestingly, implementation of several anti-COVID-19 therapies should, directly and
indirectly, affect COVID-19 related neurodysfunction. However, it remains unclear how
SARS-CoV-2-related therapies affect COVID-19-associated neuroinflammation and neu-
rodegeneration [10,87,99]. Hypothetically, by decreasing the burden of the pathogens
(remdesivir), and by modulating the immune system response (steroids, convalescent
plasma), they should have a positive effect [100–102].

The purpose of this longitudinal study is to examine the long-term dynamics of
biomarkers of neuroinflammation, neurodegeneration, and neuroprotective milieu in
hospitalized patients with COVID-19 while considering the timing of the illness and im-
munological response in the context of stroke occurrence. We hypothesize that the elevation
of neuronal degeneration markers would resolve over time in survivors, particularly in
individuals treated with COVID-19-related therapy. We hypothesize that increases in
neuroinflammation markers can be linked to the incidence of strokes during our follow-up
windows. Most importantly, we investigate if the initial increase in neurodegeneration
markers will be accompanied by a decline in neuroprotective proteins, creating condi-
tions that could promote the release of neurodysfunctional markers and their potential
long-term outcomes.

2. Materials and Methods
2.1. Patient Enrollment

Our study protocol was approved by the Institutional Review Boards (IRB) of the
University of Pennsylvania and was performed according to the ethical guidelines of the
2003 Helsinki Declaration (#813913; approved 3 February 2020). Patients admitted to the
hospital between March 2020 and December 2020 with a diagnosis of COVID-19, via PCR
confirmation, were approached for written consent.

Upon consent, blood was collected in vacutainer tubes with heparin, cooled, and
spun down. Serum was isolated and stored at −80 ◦C. In order to anchor the samples to
common, relative timepoints in the progression of patients’ COVID-19, all samples were
divided as admission (drawn within 48 h of admission), H2 (+3–4 days after admission),
and H3 (+4–7days) (Supplemental Figure S1). In addition, H4 samples were collected from
inpatient and outpatients samples between 8 days and 28 days if the patient was available
during a routine visit to the healthcare system to provide a convenience sample.
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2.2. Clinical Data

The electronic medical records (EMR) was used to collect the demographic and clinical
data for all the enrolled participants. Patients self-determined their race and ethnicity.
The Acute Physiology and Chronic Health Evaluation II (APACHE II) Score was calcu-
lated within one hour (APACHE1h) and at 24 h after admission (APACHE24h) [103,104].
The burden of chronic disease was calculated using the Charlson’s Comorbidity Index
(CCI) [105]. The severity of illness was determined via the Marshalls Organ Dysfunction
Score (MODS) [106]. Survival was determined at six months from admission. The incidence
and nature of cerebrovascular events were determined from medical records. Long-term
follow-ups extended up to 180 days, depending on the availability of patient records. If no
records were available at that time, we assumed that patients did not expire and did not
experience a CVA.

The information on treatments with remdesivir, convalescent plasma, and steroids
was extracted from medical records. Except for the latter, the treatments were highly
protocolized per hospital policy and according to the FDA recommendations for the
given treatment. Steroid treatment was defined as the engagement of any intravenous or
oral glucocorticoid steroid compounds to treat COVID-19 pneumonia per the healthcare
provider’s notes.

2.3. Assessment of Biomarkers

Neurological (τ, phospho τ, amyloid β-40, amyloid β-42, TDP43, NRGN, YKL40,
NCAM-1, KLK6, clusterin, and fetuin), cytokine (MIF, IL-6, TNF, MIP), and inflammatory
(D-dimers, ferritin) markers were measured using a multiplex kit (Theromofisher, Waltham,
MA, USA) on a MagPix machine (Luminex; Austin, TX, USA). In addition, commercial
enzyme-linked immunoassays were used to measure NF-L (US Diagnostic, Boston, MA,
USA), CCL23 (R&D), and MCP-1 (Biolegend, San Diego, CA, USA). Per protocol, all
samples were inactivated with (5%) Triton X-100 (ChemCruz, Dallas, TX, USA).

2.4. Assessment of SARS-CoV-2 Disease Burden

The level of S-protein was measured using commercially available kits (RayBiotech,
Stanford, CA, USA). The levels of specific immunoglobulins against proteins S and N
were measured using commercially available kit (RayBiotech, Stanford, CA, USA). The
absorbance OD values were subtracted from albumin-coated plates and referenced against
the standard curve.

2.5. Statistical Analysis

The Shapiro–Wilk W test and distribution plots were used to test the normality of
distribution variables. Parametric variables were expressed as mean ± SD and compared
using Student’s t-test. For non-parametric variables, median (Me) and interquartile ranges
(IR) will be shown with the U-Mann–Whitney statistic employed to compare such vari-
ables. ANOVA was calculated for parametric variables with multiple discrete values with
Shaffer’s test as a post hoc test. Correlation momentums were calculated as r2 Pearson
values with r2 more than 0.25 being significant correlations. The regression analysis was
completed using stepwise methods. A p-value of less than 0.05 was considered statistically
significant for all tests. Statistical analyses were performed with SPSS 26 (IBM, Waltham,
NY, USA).

3. Results
3.1. Characteristics of the Study Cohort

COVID-19 patients were predominantly Black (66.7%) and male (60.0%), with the
average age being 58.9 + 14.61 (X ± SD) years old (Table 1). Patient dispositions were
similar at one and six months, with an increasing number of patients deceased at six
months (Supplementary Figure S2). There was no significant difference between our initial
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cohort in terms of demographic and clinical data, except the length of stay was significantly
longer in the cohort that participated in the 6-month follow-up (Table 1).

Table 1. Demographical and clinical variables of the studied population at the beginning of data collection compared to
patients at the 6-month follow-up, patients who had a stroke six months later, and patients 48 h after admission.

All Patients Recruited vs. Patients
Available to Follow-Up at 6 Months.

Comparison of All Patients Recruited Who
Experienced a Cerebrovascular Event (CVA) by the

6 Month Follow-Up vs. Patients with No
Post-COVID-19 CVA.

All (n = 105) 6 months (n = 51) No Stroke (n = 95) Stroke (n = 10)

Age [X ± SD] 62.4 ± 15.52 58.4 + 18.50 64.1 ± 15.07

Age Below 60 [%] 43.4 33.9 44.2 40.0

Over 60 [%] 56.6 66.1 55.8 60.0

Gender
Male [%] 60.0 62.7 57.9 80.0

Female [%] 40.0 37.3 42.1 20.0

Height Meters [X ± SD] 1.71 ± 0.08 1.72 ± 0.10 1.70 ± 0.10 * 1.74 ± 0.12 *

Weight Kilograms [X ± SD] 93.1 ± 20.11 88.9 ± 24.44 93.4 ± 27.72 90.6 ± 21.85

Race

Hispanic Latino [%] 27.6 8.5 26.3 40.0

Black [%] 62.9 61.0 64.2 50.0

Other/UNK/Asian [%] 9.5 30.5 9.5 10.0

Clinical characteristics All (n = 105) 6 months (n = 51) No Stroke (n = 95) Stroke (n = 10)

Mortality [%] 21.9 32.2 20.0 40.0

Length of Stay [days; X ± SD] 16.6 ± 14.18 # 38.0 ± 31.21 # 15.5 ± 22.88 17.4 ± 24.21

ICU [%] 50.0 71.2 49.5 63.6

Intubated [%] 33.0 50.8 33.7 30.0

ECMO [%] 9.4 15.3 7.4 30.0

APACHE + 1 h [X ± SD] 11.0 ± 6.26 12.6 ± 7.88 10.8 ± 8.01 14.1 ± 4.79

APACHE + 24 h [X ± SD] 11.0 ± 5.83 12.9 ± 7.05 10.5 ± 7.45 * 16.1 ± 2.69 *

MOF All (n = 105) No Stroke (n = 95) Stroke (n = 10)

Admission 48 h Admission 48 h Admission 48 h

MODS [X ± SD] 3.0 ± 2.72 3.2 ± 2.96 2.9 ± 2.71 3.3 ± 3.06 4.7 ± 2.31 ** 2.3 ± 1.64 **

* Statistical difference when comparing patients with stroke vs. patients without stroke. ** Statistical difference when comparing patients at
admission vs. patients at 48 h from admission. # Statistical difference when comparing patients at admission vs. patients at 6 months
from admission.

Five patients were admitted with stroke as one of their principal diagnoses. Between
28 days and six months, an additional six strokes occurred (2.9% ischemic stroke, 2.9%
hemorrhagic stroke, and 0% mixed nature) (Figure 1). Around 9.5% of patients had a
history of pre-existing stroke, but only one had an acute stroke following COVID-19
hospitalization in that group. One patient suffered two strokes during the observation
period. The APACHE scores at 6 months and MODS scores at 48 h from admission were
significantly increased among patients with a cerebrovascular event more than patients
without a CVA (Table 1). However, mortality was similar between patients with or without
CVA events (Table 1).
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Figure 1. The distribution of cerebrovascular accidents that occurred following hospital admission.

Patients with new cerebrovascular events after admission had similar burdens of
comorbidities measured (CCIRecovered = 3.5 + 3.40 vs. CCICVA = 5.1 + 3.40; t [33;18] = 0.357,
p = 0.553) (Table 1). However, the pre-existing diseases of patients with stroke vs. no
stroke indicated that histories of congestive heart failure (χ2 = 8152; p = 0.043) and AIDS
(χ2 = 34.12; p = 0.0001) were more common in patients with early (less than 28 days), rather
than late strokes (less than 6 months) (data not shown). The incidence of pre-existing stroke
in patients suffering from a cerebrovascular incident during COVID-19 hospitalization vs.
patients without CVA during that time were comparable (10.0% vs. 11.3%, respectively).

Mortality in the studied cohort was 21.9%, with some patients dying within 48 h from
admission (Table 1; Supplemental Figure S2). Mortality among patients with stroke was
40%, and 50% of these deaths occurred 110 days following admission. Patients with stroke
had a higher, statistically insignificant admittance rate to the ICU (Table 1).

3.2. The Dynamics of Neurodegeneration and Neuroinflammation after COVID-19 and Their
Relationship to Inflammation and Viral Burden

The serum levels of neuro-injury and neurodegeneration markers followed three time
patterns. Amyloid-β42, TDP43, and NF-L significantly declined at H2 and H3 compared
to initial levels (H1) and rebounded at H4 (Figure 2A–C). KLK6 levels declined at H3
(Figure 2D). YKL-40 was statistically elevated at H4, while NCAM-1 was elevated at all
post-admission time points (Figure 2E,F). There were no differences in serum levels of
Amyloid-β40 for any measured time points (data not shown). Levels of total τ protein and
phosphorylated τ were highly variable, with few individuals having significant increases
in these serum levels while the majority were below detectable levels (Supplementary
Figure S3). However, serum levels of the S-protein correlated with phospho τ (r2 = 0.25;
p < 0.000001) (Supplementary Figure S4). Concomitantly, TDP-43 correlated highly with
ferritin at admission (r2 = 0.73; p < 0.00001) and during the remainder of the hospitalization
(r2 = 0.39; p < 0.000001) (Supplementary Figure S4). Similarly, KLK6 correlated highly
with ferritin at admission (r2 = 0.5; p < 0.00001) and weakly throughout the hospitalization
(r2 = 0.24; p < 0.000001) (Supplementary Figure S4). Other correlations were weak yet
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statistically significant (Supplementary Figure S4). There was no significant correlation
between platelets, WBC, and D-dimer (Supplementary Figure S4).
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Figure 2. Amyloid β42, TDP43, and NFL serum levels diminished shortly after admission to recover at 28 days (A–C).
KLK6 decreased significantly at seven days, then recovered to baseline levels (D). Serum YKL40 increased in sample taken
more than 7 days after admission (E). NCAM-1 significantly and sustainably increased afteno, it should pr admission (F).
* Statistical difference when compared to all patients at admission.

Fetuin serum levels increased at 48 h and 7 days from admission yet were variable
(Figure 3A). Clusterin levels were significantly elevated immediately after admission
(H2), followed by a return to baseline levels at the 3 day mark (Figure 3B). Contrary to
fetuin and clusterin, TREM-2 levels were depleted at 48 h but significantly elevated by
28 days (Figure 3C). Both fetuin and clusterin correlated highly with each other (r2 = 0.68;
p = 0.00001) (Figure 3D). A cluster analysis, including neurodegeneration and neuropro-
tective markers, revealed four clusters (Figure 3E). Cluster #0 demonstrated a significant
depletion of clusterin with concomitant elevations in YKl-40 and TDP43 and preserved
TREM-2 (Figure 3E). Clusters #1, #2, and #3 displayed decreases in TREM-2 while clusterin
levels were preserved (Figure 3E). Fetuin and other neurodegeneration markers (τ, phospho
τ, amyloids, NCAM-1) were not significant factors in creating clusters (data not shown).
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The trajectory of neuroinflammatory markers reflected elevated CCL23 serum levels 
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CCL23 All 434.4 ± 578.05 594.1 ± 717.13 886 ± 1001.68 1069.1 = ±1165.81 * 
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Admission—48 h 2d–4d 5d–7d 8–25 days 

MCP-1 

All 449.4 ± 499.09 458.4 ± 743.52 291.4 ± 304.24 * 601.8 ± 619.20 
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and clusterin serum levels (D). Clusterin analysis revealed 4 clusters (E), one with depletion of clusterin (#0) while the
clusters #1, #2, #3 are signified by depletion of TREM-2. * Statistical difference when compared to all patients at admission
(p < 0.05).

3.3. The Dynamics of Neurovasculitis Markers during COVID-19

The trajectory of neuroinflammatory markers reflected elevated CCL23 serum levels
for all patients at H4 (Table 2). In addition, MCP levels and MIF levels returned to near-
admission levels following a significant decline at 7 days from admission (Table 2).

Table 2. Dynamics of inflammatory markers over time in all patients, and those who did vs. did not suffer from a stroke
within 6 months following hospitalization for COVID-19.

Admission—48 h 2d–4d 5d–7d 8–25 Days

CCL23

All 434.4 ± 578.05 594.1 ± 717.13 886 ± 1001.68 1069.1 = ±1165.81 *

Stroke 880.1 ± 1232.56 466.5 ± 696.57 644 ± 1113.75 1640.4 ± 2198.53

No Stroke 413.2 ± 874.78 610.4 ± 1169.72 917.6 ± 1348.26 905.8 ± 1302.94

Admission—48 h 2d–4d 5d–7d 8–25 days

MCP-1

All 449.4 ± 499.09 458.4 ± 743.52 291.4 ± 304.24 * 601.8 ± 619.20

Stroke 374.6 ± 0.0 420.4 ± 415.73 145.1 ± 126.60 324.2 ± 334.15

No Stroke 451.4 ± 505.82 463.7 ± 781.66 317.2 ± 321.24 681.1 ± 663.93

Admission—48 h 2d–4d 5d–7d 8–25 days

MIF

All 258.4 ± 313.07 187.6 ± 186.1 * 182.3 ± 124.89 * 372.9 ± 1101.91

Stroke 214.6 ± 173.22 169.32 ± 135.59 152.6 ± 93.10 270.3699 ± 399.22

No Stroke 260.5 ± 322.97 190.1 ± 194.87 # 185.8 ± 129.10 # 399.4 ± 12223.63

Admission—48 h 2d–4d 5d–7d 7–28 days

IL-6

All 10.9 ± 11.98 13.1 ± 13.81 11.9 ± 11.98 11.2 ± 10.27

Stroke 2.8 ± 0.15 10.4 ± 23.07 21.6 ± 35.56 & 23.6 ± 32.61 &

No Stroke 11.4 ± 16.88 13.5 ± 21.12 10.9 ± 14.95 & 8.4 ± 11.43 &
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Table 2. Cont.

Admission—48 h 2d–4d 5d–7d 8–25 Days

IL-8

All 22.2 ± 30.7 10.4 ± 10.36 * 16.9 ± 12.60 11 ± 6.82 *

Stroke 12.7 ± N/A 5.2 ± 2.70 ## 2.6 ± N/A 8.2 ± 5.10

No Stroke 22.5 ± 57.15 10.8 ± 19.89 # 17.9 ± 20.96 11.7 ± 10.36 #

Admission—48 h 2d–4d 5d–7d 8–25 days

TNFα

All 0.6 ± 0.42 1.1 ± 0.98 * 1.2 ± 1.07 0.7 ± 0.40

Stroke 0.5 ± 0.55 1.7 ± 2.36 0.7 ± 0.23 0.9 ± 0.92

No Stroke 0.6 ± 0.54 1 ± 1.69 1.2 ± 2.74 0.7 ± 0.52

Admission—48 h 2d–4d 5d–7d 8–25 days

Platelet
Count

All 218.7 ± 68.17 252.8 ± 93.7 * 280.8 ± 108.02 * 239.2 ± 78.71

Stroke 232.8 ± 81.61 264.4 ± 122.43 321.4 ± 119.03 254.5 ± 137.97

No Stroke 217.1 ± 87.37 251.5 ± 125 # 277.4 ± 146.61 # 237.8 ± 98.69

Admission—48 h 2d–4d 5d–7d 8–25 days

WBC Count

All 8.2 ± 3.41 9 ± 3.65 11 ± 4.23 * 11.4 ± 4.95 *

Stroke 7.1 ± 2.99 7.1 ± 3.09 11.9 ± 4.3 17.6 ± 17.07 &

No Stroke 8.3 ± 4.39 9.2 ± 4.78 10.9 ± 6.99 # 10.8 ± 5.73 #,&

Treat. * Statistical difference when compared to all patients at admission (p < 0.046). # Statistical difference when compared to patients who
did not have a stroke at admission (p < 0.012). ## Statistical difference when compared to patients who did have a stroke at admission
(p < 0.014). & Statistical difference when comparing patients who did vs. did not have a stroke at a given timepoint (p < 0.05).

3.4. Effect of COVID-19 Directed Therapies on Neurodegeneration, Neuroinflammation, and
Inflammatory Markers

Patients not treated with convalescent plasma demonstrated significantly higher levels
of NCAM-1 and total τ (Figure 4). Patients not treated with remdesivir had significantly
elevated levels of Amyloid-β40 (Figure 4). The steroid treatment did not significantly alter
any markers measured (data not shown).
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3.5. Relationship between Stroke and Clinical Markers

There was no statistical difference between the initial severity of clinical presentation
in patients with and without stroke as measured by APACHE at one hour from admission,
yet the scores at 24 h were greater for stroke patients (Table 1). In addition, initial MODS
and SOFA scores for the first 48 h remained similar for all patients and became significantly
worse when looking at patients with stroke (Table 1; Supplemental Table S1). Platelet levels
increased significantly at H2 for all patients and patients who did not experience a stroke,
followed by a recovery at H4 (Table 2). Elevated WBC counts were seen in all patients, on
average, at more than 3 days following admission, with stroke patients having significantly
higher levels than the non-stroke group at H4 (Table 2). Clinically, COVID-19 patients
diagnosed with acute stroke exhibited higher serum IL-6 than patients not diagnosed
with acute stroke, starting at 3 days post-admission (Table 2). This cohort of patients also
demonstrated significantly decreased serum IL-8 48 h after admission, yet recovered to
admission levels after 7 days (Table 2). In addition, TNFα levels slightly increased before
returning to baseline levels (Table 2) There were also no significant differences for the
procalcitonin serum levels of stroke patients, although they did exhibit significantly higher
D-dimer levels at H4 than those not diagnosed with acute stroke (Supplemental Table S1).
Finally CRP (∆Xdifference = +1.03 CI: 0.057–2.04; p = 0.038) and τ (∆Xdifference = +3.27 CI:
3.31–6.21; p = 0.029) were elevated in patients with stroke in the wake of COVID-19 (data
not shown).

4. Discussion

This is the first study showing dynamic changes in neurodegeneration and neuropro-
tective markers in COVID-19 patients. We found that several neurodegeneration markers
(YKL40, NCAM-1, CCL23) were elevated in survivors of COVID-19 in a sustained fashion.
Others (Amyloid β42, KLK6, TDP43, NF-L) declined in the intermittent period after admis-
sion before returning to their original levels in survivors. Contrary to this, neuroprotective
factors (fetuin, clusterin, TREM-2) were highly variable across the observed time periods.
Thus, our study suggests an emergence of imbalance strongly favoring the neurodegenera-
tion process in individuals with acute COVID-19, a suggestion that was theorized but not
clinically examined [1,9,10,13,14,87].

The sustained elevation of YKL40, NCAM-1, and CCL23 may represent an ongoing
pathological process in the survivors of COVID-19 as the levels did not decline below
those recorded at admission [46,51,107]. These bio-spectrum markers are not specific to
one type of dementia but rather represent the beginning or acceleration of underlying
neurodegeneration processes in the wake of COVID-19 [1,13,108,109]. This finding is con-
sistent with the suggestion of ongoing brain injury in post-viral syndromes or COVID-19
long-haulers [10,13]. TDP43 was particularly linked to ongoing brain injury since its el-
evation has been observed in traumatic brain injury, post-cardiac arrest states, strokes,
and dementia [38,45,107,110,111]. Similarly, KLK6 is seen in several neurodegeneration
disorders [48,55,112–115]. Sustained elevations in TDP43, YKL40, and KLK6 may suggest
potential links to delirium, increased psychoactive disorders, and atypical dementias in the
wake of COVID-19. Variable increases in total and phosphorylated τ, and a predilection
of individuals with pre-existing strokes to have another cerebrovascular event, further
suggest the existence of vulnerable characteristics. NF-L was not dramatically altered,
suggesting low dynamics of the neurodegeneration process, but a relatively low sensitivity
test was used compared to the published data [50]. Using cerebrospinal fluid may have
had a higher predictive value [57,116–118]. Elevations in serum NF-L levels were reported
inconsistently in studies plagued with small fibers, unadjusted for comorbidities, or limited
to the most sick patients [12,32,35,94,119–121]. Gisslen et al. reported the normalization of
GFAP and NF-L six months after the resolution of COVID-19, but their patients continued
to exhibit neurological symptoms and their study was limited to these markers [34]. Per-
sistent elevations of several neurodegeneration markers suggest an ongoing pathological
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process in COVID survivors that is heterogeneous [38,43,44,46,51,52,55,87,94,111,122]. This
indicates a potential mechanism for post-COVID-19 cognitive decline.

It is unclear if COVID-19 neurodegeneration is specific to SARS-CoV2 neurotoxi-
city, centrally mediated microglia inflammation, or the effect of ICU-grade inflamma-
tion [27,28,30,81,123]. Though SARS-CoV-2 particles can bind several proteins and affect
their folding, several changes observed in our population occured after the resolution of
acute inflammation [21,22,25]. A lack of correlation between viral protein load and increases
in any of the neurodegeneration markers is consistent with observations linking the ongo-
ing elevation of neurodegeneration markers in the cerebrospinal fluid without cytokine
storms [120]. Alternatively, the smoldering of neuroinflammation may be the underlying
cause of the persistent elevation of neurodegeneration markers, which is not severe enough
to be reflected in the serum level of an acute neuro-injury [33,35]. The predominance
of tissue inflammation in olfactory structures during COVID-19 suggests that general-
ized, or regional, inflammation is the culprit despite direct viral neurotoxicity [18,66,124].
Ferritin is the main marker of inflammation that correlated with TDP43 and YKL40 in
our study. Furthermore, ferritin is used to gauge the degree of inflammation in several
inflammatory processes and COVID-19 [122,125–127]. The activation of macrophages,
frequently reflected by an increase in ferritin, was suggested as one of the major drivers
of COVID-19 evolution and was related to the degree of neuronal degeneration and in-
jury in general [26,83,122,125,128–130]. Elevations in CCL23, a cytokine involved in the
recruitment of leukocytes to nervous system compartments and linked to vascular injury-
related stroke, could suggest an influx of peripheral leukocytes into the brain [68–70].
Our study is correlational; however, several other investigations suggest that ongoing
neuroinflammation leads to neurodegeneration [10,51,59,65,80,85]. Finally, the increase in
neurodegeneration markers is part of the non-specific response to critical care illness [87].
This conclusion supports the finding that the cerebrospinal fluid of COVID-19 patients
indicates a neuronal injury but not inflammation [120]. At the same time, the activation
of leukocytes persists well into COVID-19 recovery, providing a pool of inflammatory
cells [128]. These activated leukocytes can be recruited into the brain via a CCL23-driven
mechanism [67,69,120]. Our data suggest that the activation of leukocytes continues despite
a decline in S1, but the persistence of elevated procalcitonin and ferritin levels is highly
suggestive of the smoldering of inflammation.

We demonstrated a sustained increase in NCAM-1, a marker traditionally linked to
peripheral nervous system damage. NCAM was found to be 85% identical to SARS-CoV-2
envelope proteins in silica, suggesting that an immune response against SARS-CoV-2 could
theoretically lead to demyelination and polyneuropathy via molecular mimicry [36]. Rela-
tively high Guillain–Barre Syndrome (GBS) incidence among COVID-19 victims would fur-
ther support this conclusion, but this is not conclusively documented in COVID-19 [3,29,37].
However, we found that neither the serum levels of spike protein nor the immunoglobulin
titer against it correlated to the NCAM-1 increase. In addition, the level of inflammation
measured via procalcitonin, ferritin, or IL-6 serum levels did not correlate with that of
NCAM-1. NCAM-1 levels remained elevated during and after the onset of COVID-19,
suggesting evidence of ongoing peripheral nerve injury. The next step is to link the severity
of GBS to NCAM-1 levels to describe the correlation between these markers and the degree
of clinical symptoms [131–133].

The persistent elevations of markers is accompanied by decreases in somre neu-
roprotective molecules during acute COVID-19 admission with some recovery after-
wards [85,134,135]. Clusterin, TREM-2 and fetuin are linked to neuronal protection and
cleavage of several pathological proteins [48,85,86,94,136,137]. The changes in their respec-
tive serum levels has been demonstrated in several inflammatory processes and is linked
to the severity of the inflammatory response [97]. This acute TREM-2 initial decline would
result in the increased vulnerability of COVID-19 survivors to secondary insults, further im-
pairing their ability to successfully recover from neurological sequela. This raises concerns
about the ability of survivors to recover fully from the disease if the initial insult deprived
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a host of some neuroprotective mechanisms [1,9,13,14,16]. An alteration in the spectrum of
neurobiomarkers (protective vs. injury vs. degeneration) suggests a loss of autoregulated
homeostasis and has been proposed to explain the origin of dementia [99,108]. Longitu-
dinal surveillance, with a focus on determining a composite level of several biomarkers,
may potentially identify survivors most vulnerable to the progress of clinically-evident
dementia [33,56,70,86].

A significant finding of our work is that anti-viral treatment has a somewhat limited
effect on the serum levels of neurodegeneration markers. Treatment with the convalescent
plasma remdasavir seemed to limit the rise of some of the neurodological markers while
steroids had no detectable statistically effect. This may suggest that the recovery of cogni-
tive function may depend on limiting direct viral invasion as remdasavir is interferring
with viral proliferation. [101,138]. Convalescent treatment may be particularly clinically
applicable as it switches off activated T cells, an important culprit in COVID-19 neu-
ropthology [139]. Neuroprotective markers may be the non-specific effect of suppressing
inflammation as the leukocytes remain activated even after treatment [128,139].

Our data concur with prior observations regarding stroke being commonplace in
patients with COVID-19 [7]. What is surprising is the late incidence of strokes. The
primary determinant of stroke occurrence was the severity of the disease. Viral pro-
tein load or immunoglobulin levels play less significant roles compared to the overall
severity of the disease. Furthermore, the activation of complement, vasculitis, and al-
tered endothelium permeability is believed to be causative of the increased frequency
of cerebrovascular accidents, delirium, and even psychiatric disorders in patients diag-
nosed with COVID-19 [13,20,67,74,140,141]. Furthermore, stroke progression in patients
with pre-existing conditions depends on cytokines critical for arterial remodelings, like
YKL-40 [141,142]. Finally, the increased incidence of strokes in COVID-19 patients may be
mediated by other organ failures like cardiac irregularities, generalized coagulopathy, or
general inflammation [140].

Our study has several limitations. The size of the group is relatively small but compa-
rable to other studies [121]. Second, there may be an unintended bias in the recruitment
of subjects considering the relatively high incidence of stroke as most of the patients
admitted were critical during the initial part of the study. Over time, similar patients
would not have qualified for hospital admission due to the paradigm shift of COVID-19
treatment favoring admission only for the most severe cases. This may be secondary to
accidental enrollment bias as the recruitment area is located mostly within disadvantaged
neighborhoods. However, our sample is very representative of the COVID-19 population.
Neuro-ICU staff treated most COVID-19 patients, resulting in a higher awareness of neuro-
logical complications and subsequent cerebrovascular incidents. A total of 54 patients were
lost at the 6-month follow-up, bringing the sample size at that time point to 51 patients.
Consequently, the stroke incidence at 6 months represents the best-case scenario and is
consistent with rates from prior reports [1,12,109]. Though we detected several changes
in neuromarkers during COVID-19, the correction between them and the viral load was
remote, while their correlations to inflammatory markers were much stronger. In any
case, these are only correlational dependencies confounded by several factors like the
time when the disease was clinically apparent, immunological make-up, and the genetic
predisposition of the enrolled individuals. Elevations of markers are not highly specific for
neurodegeneration as increases are also observed in several other conditions. We did not
include a control group as the matching of patients is difficult and prone to bias. While
most researchers focus on the viral load, we measured the viral burden by assessing the
S-spike protein level. However, the pathological effect of SARS-CoV2 is related to both
cytotoxic effect and immunological activation. RNA loads are more reflective of the former,
while immunological response relates more to the latter. Using viral load is imprecise as
several patients may acquire a disease with some lag before the emergence of clinically
apparent symptoms. Furthermore, some of the markers are not specific to neurological
injury or dementia [52,53,107,110,111,141]. YKL40 was linked to cardiovascular disorders,
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while TDB43 was elevated in several atypical dementias or ischemic damage to the brain
in general [43,44,52,107,141]. Finally, we did not use the most sensitive tests to detect the
levels of several neurodegeneration markers as we believed that COVID-19 inflammation
would result in significant brain injury consistent with apparent increases in the serum lev-
els of several markers [108]. We did not factor in genetic predisposition to several markers’
changes that significantly contribute to the susceptibility to neurodegeneration [98,108,143].
Finally, we were unable to assess several environmental and lifestyle factors, including
diet, smoking, use of illicit drugs, pre-existing cognitive decline, and others. They have
direct effects on the SARS-CoV-2 pathogen (initial viral load, immunosuppression status),
modulate inflammation (Vit D3), or indirectly influence neurodegeneration processes (lipid
profile) [144–147]. We could not adequately assess patients’ home intake as many of our
patients reported not taking medications due to affordability. These are important factors
as the neurodegenerative effect of COVID-19 inevitably affects patients with pre-existing
conditions or recent critical care illnesses. The latter process may not have been resolved by
the time of the COVID-19 exposure, resulting in compounding damage from two stressors.

Our study has several strengths. First, this is a longitudinal study of a significant
cohort of patients adding to two prior studies [12,98]. Second, the longitudinal analysis
of markers was shown to be more predictive of their recovery compared to singular
measurements [121]. Third, we assessed several markers simultaneously in the context
of immune system activation [7]. Some of the markers were assessed for the first time
while others (YKL40, neurogranin) were reported in small groups [31]. Fourth, the study
considered when the illness started, when the patients were admitted to the hospital, the
severity of the clinical presentation, and the overall immune system activation. Finally, the
study cohort is representative of the US population and diverse clinical presentations.

5. Conclusions

Our study revealed concomitant changes and changes in neurodegenerative and
neuroprotective markers. We also showed changes in NCAM-1, a protein linked to the
injury of peripheral nerves. The observed patterns of biomarker changes had traits typical
of a post-ICU syndrome.
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